Mass
From Wikipedia, the free encyclopedia
This article is about the scientific concept. For the substance of which all physical objects consist, see Matter. For other uses, see Mass (disambiguation).
Classical mechanics |
---|
Mass is not the same as weight, even though we commonly calculate an object's mass by measuring its weight. A woman standing on the Moon would weigh less than she would on Earth because of the lower gravity, but she would have the same mass.
For everyday objects and energies well-described by Newtonian physics, mass describes the amount of matter in an object. However, at very high speeds or for subatomic particles, special relativity shows that energy is an additional source of mass. Thus, any stationary body having mass has an equivalent amount of energy, and all forms of energy resist acceleration by a force and have gravitational attraction.
There are several distinct phenomena which can be used to measure mass. Although some theorists have speculated some of these phenomena could be independent of each other,[1] current experiments have found no difference among any of the ways used to measure mass:
- Inertial mass measures an object's resistance to being accelerated by a force (represented by the relationship F = ma).
- Active gravitational mass measures the gravitational force exerted by an object.
- Passive gravitational mass measures the gravitational force experienced by an object in a known gravitational field.
- Mass–energy measures the total amount of energy contained within a body, using E = mc2.
Contents
Units of mass
Further information: Orders of magnitude (mass)
The standard International System of Units (SI) unit of mass is the kilogram (kg). The kilogram is 1000 grams (g), first defined in 1795 as one cubic decimeter of water at the melting point of ice. Then in 1889, the kilogram was redefined as the mass of the international prototype kilogram,
and as such is independent of the meter, or the properties of water. As
of January 2013, there are several proposals for redefining the
kilogram yet again, including a proposal for defining it in terms of the
Planck constant.[2]Other units are accepted for use in SI:
- the tonne (t) (or "metric ton") is equal to 1000 kg.
- the electronvolt (eV) is a unit of energy, but because of the mass–energy equivalence it can easily be converted to a unit of mass, and is often used like one. In this context, the mass has units of eV/c2. The electronvolt is common in particle physics.
- the atomic mass unit (u) is 1/12 of the mass of a carbon-12 atom, approximately 1.66×10−27 kg.[note 2] The atomic mass unit is convenient for expressing the masses of atoms and molecules.
- the slug (sl) is an Imperial unit of mass (about 14.6 kg) similar to the kilogram.
- the pound (lb) is a unit of both mass and force, used mainly in the United States (about 0.45 kg or 4.5 N). In scientific contexts where pound (force) and pound (mass) need to be distinguished, SI units are usually used instead.
- the Planck mass (mP) is the maximum mass of point particles (about 2.18×10−8 kg). It is used in particle physics.
- the solar mass (M☉) is defined as the mass of the sun. It is primarily used in astronomy to compare large masses such as stars or galaxies (≈1.99×1030 kg).
- the mass of a very small particle may be identified with its inverse Compton wavelength (1 cm−1 ≈ 3.52×10−41 kg).
- the mass of a very large star or black hole may be identified with its Schwarzschild radius (1 cm ≈ 6.73×1024 kg).
Definitions of mass
In physical science, one may distinguish conceptually between at least seven different aspects of mass, or seven physical notions that involve the concept of mass:[3] Every experiment to date has shown these seven values to be proportional, and in some cases equal, and this proportionality gives rise to the abstract concept of mass.- The amount of matter in certain types of samples can be exactly determined through electrodeposition[clarification needed] or other precise processes. The mass of an exact sample is determined in part by the number and type of atoms or molecules it contains, and in part by the energy involved in binding it together (which contributes a negative "missing mass," or mass deficit).
- Inertial mass is a measure of an object's resistance to changing its state of motion when a force is applied. It is determined by applying a force to an object and measuring the acceleration that results from that force. An object with small inertial mass will accelerate more than an object with large inertial mass when acted upon by the same force. One says the body of greater mass has greater inertia.
- Active gravitational mass [note 3] is a measure of the strength of an object's gravitational flux (gravitational flux is equal to the surface integral of gravitational field over an enclosing surface). Gravitational field can be measured by allowing a small 'test object' to freely fall and measuring its free-fall acceleration. For example, an object in free-fall near the Moon will experience less gravitational field, and hence accelerate more slowly than the same object would if it were in free-fall near the Earth. The gravitational field near the Moon is weaker because the Moon has less active gravitational mass.
- Passive gravitational mass is a measure of the strength of an object's interaction with a gravitational field. Passive gravitational mass is determined by dividing an object's weight by its free-fall acceleration. Two objects within the same gravitational field will experience the same acceleration; however, the object with a smaller passive gravitational mass will experience a smaller force (less weight) than the object with a larger passive gravitational mass.
- Energy also has mass according to the principle of mass–energy equivalence. This equivalence is exemplified in a large number of physical processes including pair production, nuclear fusion, and the gravitational bending of light. Pair production and nuclear fusion are processes through which measurable amounts of mass and energy are converted into each other. In the gravitational bending of light, photons of pure energy are shown to exhibit a behavior similar to passive gravitational mass.
- Curvature of spacetime is a relativistic manifestation of the existence of mass. Curvature is extremely weak and difficult to measure. For this reason, curvature was not discovered until after it was predicted by Einstein's theory of general relativity. Extremely precise atomic clocks on the surface of the earth, for example, are found to measure less time (run slower) when compared to similar clocks in space. This difference in elapsed time is a form of curvature called gravitational time dilation. Other forms of curvature have been measured using the Gravity Probe B satellite.
- Quantum mass manifests itself as a difference between an object's quantum frequency and its wave number. The quantum mass of an electron, the Compton wavelength, can be determined through various forms of spectroscopy and is closely related to the Rydberg constant, the Bohr radius, and the classical electron radius. The quantum mass of larger objects can be directly measured using a watt balance. In relativistic quantum mechanics, mass is one of the irreducible representation labels of the Poincaré group.
Weight vs. mass
Main article: Mass versus weight
In everyday usage, mass and "weight"
are often used interchangeably. For instance, a person's weight may be
stated as 75 kg. In a constant gravitational field, the weight of an
object is proportional to its mass, and it is unproblematic to use the
same unit for both concepts. But because of slight differences in the
strength of the Earth's gravitational field at different places, the distinction
becomes important for measurements with a precision better than a few
percent, and for places far from the surface of the Earth, such as in
space or on other planets. Conceptually, "mass" (measured in kilograms) refers to an intrinsic property of an object, whereas "weight" (measured in newtons) measures an object's resistance to deviating from its natural course of free fall,
which can be influenced by the nearby gravitational field. No matter
how strong the gravitational field, objects in free fall are weightless, though they still have mass.[4]The force known as "weight" is proportional to mass and acceleration in all situations where the mass is accelerated away from free fall. For example, when a body is at rest in a gravitational field (rather than in free fall), it must be accelerated by a force from a scale or the surface of a planetary body such as the Earth or the Moon. This force keeps the object from going into free fall. Weight is the opposing force in such circumstances, and is thus determined by the acceleration of free fall. On the surface of the Earth, for example, an object with a mass of 50 kilograms weighs 491 newtons, which means that 491 newtons is being applied to keep the object from going into free fall. By contrast, on the surface of the Moon, the same object still has a mass of 50 kilograms but weighs only 81.5 newtons, because only 81.5 newtons is required to keep this object from going into a free fall on the moon. Restated in mathematical terms, on the surface of the Earth, the weight W of an object is related to its mass m by W = mg, where g = 9.80665 m/s2 is the acceleration due to Earth's gravitational field, (expressed as the acceleration experienced by a free-falling object).
For other situations, such as when objects are subjected to mechanical accelerations from forces other than the resistance of a planetary surface, the weight force is proportional to the mass of an object multiplied by the total acceleration away from free fall, which is called the proper acceleration. Through such mechanisms, objects in elevators, vehicles, centrifuges, and the like, may experience weight forces many times those caused by resistance to the effects of gravity on objects, resulting from planetary surfaces. In such cases, the generalized equation for weight W of an object is related to its mass m by the equation W = –ma, where a is the proper acceleration of the object caused by all influences other than gravity. (Again, if gravity is the only influence, such as occurs when an object falls freely, its weight will be zero).
Macroscopically, mass is associated with matter, although matter is not, ultimately, as clearly defined a concept as mass. On the subatomic scale, not only fermions, the particles often associated with matter, but also some bosons, the particles that act as force carriers, have rest mass. Another problem for easy definition is that much of the rest mass of ordinary matter derives from the invariant mass contributed to matter by particles and kinetic energies which have no rest mass themselves (only 1% of the rest mass of matter is accounted for by the rest mass of its fermionic quarks and electrons). From a fundamental physics perspective, mass is the number describing under which the representation of the little group of the Poincaré group a particle transforms. In the Standard Model of particle physics, this symmetry is described as arising as a consequence of a coupling of particles with rest mass to a postulated additional field, known as the Higgs field.
The total mass of the observable universe is estimated at between 1052 kg and 1053 kg, corresponding to the rest mass of between 1079 and 1080 protons.[citation needed]
Inertial vs. gravitational mass
Although inertial mass, passive gravitational mass and active gravitational mass are conceptually distinct, no experiment has ever unambiguously demonstrated any difference between them. In classical mechanics, Newton's third law implies that active and passive gravitational mass must always be identical (or at least proportional), but the classical theory offers no compelling reason why the gravitational mass has to equal the inertial mass. That it does is merely an empirical fact.Albert Einstein developed his general theory of relativity starting from the assumption that this correspondence between inertial and (passive) gravitational mass is not accidental: that no experiment will ever detect a difference between them (the weak version of the equivalence principle). However, in the resulting theory, gravitation is not a force and thus not subject to Newton's third law, so "the equality of inertial and active gravitational mass [...] remains as puzzling as ever".[5]
The equivalence of inertial and gravitational masses is sometimes referred to as the "Galilean equivalence principle" or the "weak equivalence principle". The most important consequence of this equivalence principle applies to freely falling objects. Suppose we have an object with inertial and gravitational masses m and M, respectively. If the only force acting on the object comes from a gravitational field g, combining Newton's second law and the gravitational law yields the acceleration
The first experiments demonstrating the universality of free-fall were conducted by Galileo. It is commonly stated that Galileo obtained his results by dropping objects from the Leaning Tower of Pisa, but this is most likely apocryphal; actually, he performed his experiments with balls rolling down nearly frictionless inclined planes to slow the motion and increase the timing accuracy. Increasingly precise experiments have been performed, such as those performed by Loránd Eötvös,[6] using the torsion balance pendulum, in 1889. As of 2008, no deviation from universality, and thus from Galilean equivalence, has ever been found, at least to the precision 10−12. More precise experimental efforts are still being carried out.
The universality of free-fall only applies to systems in which gravity is the only acting force. All other forces, especially friction and air resistance, must be absent or at least negligible. For example, if a hammer and a feather are dropped from the same height through the air on Earth, the feather will take much longer to reach the ground; the feather is not really in free-fall because the force of air resistance upwards against the feather is comparable to the downward force of gravity. On the other hand, if the experiment is performed in a vacuum, in which there is no air resistance, the hammer and the feather should hit the ground at exactly the same time (assuming the acceleration of both objects towards each other, and of the ground towards both objects, for its own part, is negligible). This can easily be done in a high school laboratory by dropping the objects in transparent tubes that have the air removed with a vacuum pump. It is even more dramatic when done in an environment that naturally has a vacuum, as David Scott did on the surface of the Moon during Apollo 15.
A stronger version of the equivalence principle, known as the Einstein equivalence principle or the strong equivalence principle, lies at the heart of the general theory of relativity. Einstein's equivalence principle states that within sufficiently small regions of space-time, it is impossible to distinguish between a uniform acceleration and a uniform gravitational field. Thus, the theory postulates that the force acting on a massive object caused by a gravitational field is a result of the object's tendency to move in a straight line (in other words its inertia) and should therefore be a function of its inertial mass and the strength of the gravitational field.
Origin of mass
Main article: Mass generation mechanism
In theoretical physics, a mass generation mechanism is a theory which attempts to explain the origin of mass from the most fundamental laws of physics.
To date, a number of different models have been proposed which advocate
different views at the origin of mass. The problem is complicated by
the fact that the notion of mass is strongly related to the gravitational interaction but a theory of the latter has not been yet reconciled with the currently popular model of particle physics, known as the Standard Model.Pre-Newtonian concepts
Weight as an amount
Main article: weight
The concept of amount is very old and predates recorded history. Humans, at some early era, realized that the weight of a collection of similar objects was directly proportional to the number of objects in the collection:- , or equivalently
Consequently, historical weight standards were often defined in terms of amounts. The Romans, for example, used the carob seed (carat or siliqua) as a measurement standard. If an object's weight was equivalent to 1728 carob seeds, then the object was said to weigh one Roman pound. If, on the other hand, the object's weight was equivalent to 144 carob seeds then the object was said to weigh one Roman ounce (uncia). The Roman pound and ounce were both defined in terms of different sized collections of the same common mass standard, the carob seed. The ratio of a Roman ounce (144 carob seeds) to a Roman pound (1728 carob seeds) was:
Planetary motion
See also: Kepler's laws of planetary motion
In 1600 AD, Johannes Kepler sought employment with Tycho Brahe,
who had some of the most precise astronomical data available. Using
Brahe's precise observations of the planet Mars, Kepler spent the next
five years developing his own method for characterizing planetary
motion. In 1609, Johannes Kepler published his three laws of planetary
motion, explaining how the planets orbit the Sun. In Kepler's final
planetary model, he described planetary orbits as following elliptical paths with the Sun at a focal point of the ellipse. Kepler discovered that the square of the orbital period of each planet is directly proportional to the cube of the semi-major axis of its orbit, or equivalently, that the ratio of these two values is constant for all planets in the Solar System.[note 4]On 25 August 1609, Galileo Galilei demonstrated his first telescope to a group of Venetian merchants, and in early January of 1610, Galileo observed four dim objects near Jupiter, which he mistook for stars. However, after a few days of observation, Galileo realized that these "stars" were in fact orbiting Jupiter. These four objects (later named the Galilean moons in honor of their discoverer) were the first celestial bodies observed to orbit something other than the Earth or Sun. Galileo continued to observe these moons over the next eighteen months, and by the middle of 1611 he had obtained remarkably accurate estimates for their periods.
Galilean free fall
Sometime prior to 1638, Galileo turned his attention to the phenomenon of objects in free fall, attempting to characterize these motions. Galileo was not the first to investigate Earth's gravitational field, nor was he the first to accurately describe its fundamental characteristics. However, Galileo's reliance on scientific experimentation to establish physical principles would have a profound effect on future generations of scientists. It is unclear if these were just hypothetical experiments used to illustrate a concept, or if they were real experiments performed by Galileo,[7] but the results obtained from these experiments were both realistic and compelling. A biography by Galileo's pupil Vincenzo Viviani stated that Galileo had dropped balls of the same material, but different masses, from the Leaning Tower of Pisa to demonstrate that their time of descent was independent of their mass.[note 5] In support of this conclusion, Galileo had advanced the following theoretical argument: He asked if two bodies of different masses and different rates of fall are tied by a string, does the combined system fall faster because it is now more massive, or does the lighter body in its slower fall hold back the heavier body? The only convincing resolution to this question is that all bodies must fall at the same rate.[8]A later experiment was described in Galileo's Two New Sciences published in 1638. One of Galileo's fictional characters, Salviati, describes an experiment using a bronze ball and a wooden ramp. The wooden ramp was "12 cubits long, half a cubit wide and three finger-breadths thick" with a straight, smooth, polished groove. The groove was lined with "parchment, also smooth and polished as possible". And into this groove was placed "a hard, smooth and very round bronze ball". The ramp was inclined at various angles to slow the acceleration enough so that the elapsed time could be measured. The ball was allowed to roll a known distance down the ramp, and the time taken for the ball to move the known distance was measured. The time was measured using a water clock described as follows:
- "a large vessel of water placed in an elevated position; to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of water, which we collected in a small glass during the time of each descent, whether for the whole length of the channel or for a part of its length; the water thus collected was weighed, after each descent, on a very accurate balance; the differences and ratios of these weights gave us the differences and ratios of the times, and this with such accuracy that although the operation was repeated many, many times, there was no appreciable discrepancy in the results."[9]
Newtonian mass
Earth's Moon | Mass of Earth | |
---|---|---|
Semi-major axis | Sidereal orbital period | |
0.002 569 AU | 0.074 802 sidereal year | |
Earth's gravity | Earth's radius | |
9.806 65 m/s2 | 6 375 km |
Isaac Newton had bridged the gap between Kepler’s gravitational mass and Galileo’s gravitational acceleration, proving the following relationship:
By finding the exact relationship between a body's gravitational mass and its gravitational field, Newton provided a second method for measuring gravitational mass. The mass of the Earth can be determined using Kepler's method (from the orbit of Earth's Moon), or it can be determined by measuring the gravitational acceleration on the Earth's surface, and multiplying that by the square of the Earth's radius. The mass of the Earth is approximately three millionths of the mass of the Sun. To date, no other accurate method for measuring gravitational mass has been discovered.[15]
Newton's cannonball
Main article: Newton's cannonball
Newton's cannonball was a thought experiment
used to bridge the gap between Galileo's gravitational acceleration and
Kepler's elliptical orbits. It appeared in Newton's 1728 book A Treatise of the System of the World.
According to Galileo's concept of gravitation, a dropped stone falls
with constant acceleration down towards the Earth. However, Newton
explains that when a stone is thrown horizontally (meaning sideways or
perpendicular to Earth's gravity) it follows a curved path. "For a stone
projected is by the pressure of its own weight forced out of the
rectilinear path, which by the projection alone it should have pursued,
and made to describe a curve line in the air; and through that crooked
way is at last brought down to the ground. And the greater the velocity
is with which it is projected, the farther it goes before it falls to
the Earth."[14]:513
Newton further reasons that if an object were "projected in an
horizontal direction from the top of a high mountain" with sufficient
velocity, "it would reach at last quite beyond the circumference of the
Earth, and return to the mountain from which it was projected."[citation needed]Universal gravitational mass
In contrast to earlier theories (e.g. celestial spheres) which stated that the heavens were made of entirely different material, Newton's theory of mass was groundbreaking partly because it introduced universal gravitational mass: every object has gravitational mass, and therefore, every object generates a gravitational field. Newton further assumed that the strength of each object's gravitational field would decrease according to the square of the distance to that object. If a large collection of small objects were formed into a giant spherical body such as the Earth or Sun, Newton calculated the collection would create a gravitational field proportional to the total mass of the body,[14]:397 and inversely proportional to the square of the distance to the body's center.[14]:221[note 6]For example, according to Newton's theory of universal gravitation, each carob seed produces a gravitational field. Therefore, if one were to gather an immense number of carob seeds and form them into an enormous sphere, then the gravitational field of the sphere would be proportional to the number of carob seeds in the sphere. Hence, it should be theoretically possible to determine the exact number of carob seeds that would be required to produce a gravitational field similar to that of the Earth or Sun. In fact, by unit conversion it is a simple matter of abstraction to realize that any traditional mass unit can theoretically be used to measure gravitational mass.
Measuring gravitational mass in terms of traditional mass units is simple in principle, but extremely difficult in practice. According to Newton's theory all objects produce gravitational fields and it is theoretically possible to collect an immense number of small objects and form them into an enormous gravitating sphere. However, from a practical standpoint, the gravitational fields of small objects are extremely weak and difficult to measure. Newton's books on universal gravitation were published in the 1680s, but the first successful measurement of the Earth's mass in terms of traditional mass units, the Cavendish experiment, did not occur until 1797, over a hundred years later. Cavendish found that the Earth's density was 5.448 ± 0.033 times that of water. As of 2009, the Earth's mass in kilograms is only known to around five digits of accuracy, whereas its gravitational mass is known to over nine significant figures.[clarification needed]
Given two objects A and B, of masses MA and MB, separated by a displacement RAB, Newton's law of gravitation states that each object exerts a gravitational force on the other, of magnitude
- ,
- .
Inertial mass
Inertial mass is the mass of an object measured by its resistance to acceleration. The simple classical mechanics definition of mass is slightly different than the definition in the theory of special relativity, but the essential meaning is the same.In classical mechanics, according to Newton's second law, we say that a body has a mass m if, at any instant of time, it obeys the equation of motion
This equation illustrates how mass relates to the inertia of a body. Consider two objects with different masses. If we apply an identical force to each, the object with a bigger mass will experience a smaller acceleration, and the object with a smaller mass will experience a bigger acceleration. We might say that the larger mass exerts a greater "resistance" to changing its state of motion in response to the force.
However, this notion of applying "identical" forces to different objects brings us back to the fact that we have not really defined what a force is. We can sidestep this difficulty with the help of Newton's third law, which states that if one object exerts a force on a second object, it will experience an equal and opposite force. To be precise, suppose we have two objects of constant inertial masses m1 and m2. We isolate the two objects from all other physical influences, so that the only forces present are the force exerted on m1 by m2, which we denote F12, and the force exerted on m2 by m1, which we denote F21. Newton's second law states that
Additionally, mass relates a body's momentum p to its linear velocity v:
- ,
- .
Atomic mass
Main article: Atomic mass unit
Typically, the mass of objects is measured in relation to that of the kilogram, which is defined as the mass of the international prototype kilogram (IPK), a platinum alloy cylinder stored in an environmentally-monitored safe secured in a vault at the International Bureau of Weights and Measures
in France. However, the IPK is not convenient for measuring the masses
of atoms and particles of similar scale, as it contains trillions of
trillions of atoms, and has most certainly lost or gained a little mass
over time despite the best efforts to prevent this. It is much easier to
precisely compare an atom's mass to that of another atom, thus
scientists developed the atomic mass unit. By definition, 1 u is exactly one twelfth of the mass of a carbon-12 atom, and by extension a carbon-12 atom has a mass of exactly 12 u.Mass in relativity
Special relativity
Main article: Mass in special relativity
In special relativity, there are two kinds of mass: rest mass (invariant mass),[note 8] and relativistic mass.(which increases with velocity) Rest mass is the Newtonian mass as measured by an observer moving along with the object. Relativistic mass is the total quantity of energy in a body or system divided by c2. The two are related by the following equation:Both rest and relativistic mass can be expressed as an energy by applying the well-known relationship E = mc2, yielding rest energy and "relativistic energy" (total system energy) respectively:
In bound systems, the binding energy must often be subtracted from the mass of the unbound system, because binding energy commonly leaves the system at the time it is bound. Mass is not conserved in this process because the system is not closed during the binding process. For example, the binding energy of atomic nuclei is often lost in the form of gamma rays when the nuclei are formed, leaving nuclides which have less mass than the free particles (nucleons) of which they are composed.
General relativity
Main article: Mass in general relativity
In general relativity, the equivalence principle is any of several related concepts dealing with the equivalence of gravitational and inertial mass. At the core of this assertion is Albert Einstein's
idea that the gravitational force as experienced locally while standing
on a massive body (such as the Earth) is the same as the pseudo-force experienced by an observer in a non-inertial (i.e. accelerated) frame of reference.However, it turns out that it is impossible to find an objective general definition for the concept of invariant mass in general relativity. At the core of the problem is the non-linearity of the Einstein field equations, making it impossible to write the gravitational field energy as part of the stress–energy tensor in a way that is invariant for all observers. For a given observer, this can be achieved by the stress–energy–momentum pseudotensor.[21]
Mass in quantum physics
In classical mechanics, the inert mass of a particle appears in the Euler–Lagrange equation as a parameter m:- .
- .
In the Standard Model of particle physics as developed in the 1960s, there is the proposal that this term arises from the coupling of the field ψ to an additional field Φ, the so-called Higgs field. In the case of fermions, the Higgs mechanism results in the replacement of the term mψ in the Lagrangian with . This shifts the explanandum of the value for the mass of each elementary particle to the value of the unknown couplings Gψ. The tentatively confirmed discovery of a massive Higgs boson is regarded as a strong confirmation of this theory. But there is indirect evidence for the reality of the Electroweak symmetry breaking as described by the Higgs mechanism, and the non-existence of Higgs bosons would indicate a "Higgsless" description of this mechanism.
See also
- Mass versus weight
- Effective mass (spring–mass system)
- Effective mass (solid-state physics)
- Gell-Mann–Okubo mass formula
- International System of Quantities
Notes
- When a distinction is necessary, M is used to denote the active gravitational mass and m the passive gravitational mass.
- Since the Avogadro constant NA is defined as the number of atoms in 12 g of carbon-12, it follows that 1 u is exactly 1/(103NA) kg.
- The distinction between "active" and "passive" gravitational mass does not exist in the Newtonian view of gravity as found in classical mechanics,
and can safely be ignored by laypersons. In most practical
applications, Newtonian gravity is used because it is usually
sufficiently accurate, and is simpler than General Relativity; for
example, NASA uses primarily Newtonian gravity to design space missions,
although "accuracies are routinely enhanced by accounting for tiny
relativistic effects".www2
.jpl .nasa .gov /basics /bsf3-2 .php The distinction between "active" and "passive" is very abstract, and applies to post-graduate level applications of General Relativity to certain problems in cosmology, and is otherwise not used. There is, nevertheless, an important conceptual distinction in Newtonian physics between "inertial mass" and "gravitational mass", although these quantities are identical; the conceptual distinction between these two fundamental definitions of mass is maintained for teaching purposes because they involve two distinct methods of measurement. It was long considered anomalous that the two distinct measurements of mass (inertial and gravitational) gave the identical result. The observed property, noted by Galileo, according to which objects of different mass fall with the same rate of acceleration (ignoring air resistance), is an expression of the fact that inertial and gravitational mass are the same. - This constant ratio
was later shown to be a direct measure of the Sun's active gravitational
mass; it has units of distance cubed per time squared, and is known as
the standard gravitational parameter:
- At the time when Viviani asserts that the experiment took place, Galileo had not yet formulated the final version of his law of free fall. He had, however, formulated an earlier version which predicted that bodies of the same material falling through the same medium would fall at the same speed. See Drake, S. (1978). Galileo at Work. University of Chicago Press. pp. 19–20. ISBN 0-226-16226-5.
- These two properties are very useful, as they allow spherical collections of objects to be treated exactly like large individual objects.
- In its original form, Newton's second law is valid only for bodies of constant mass.
- It is possible to make a slight distinction between "rest mass" and "invariant mass". For a system of two or more particles, none of the particles are required be at rest with respect to the observer for the system as a whole to be at rest with respect to the observer. To avoid this confusion, some sources will use "rest mass" only for individual particles, and "invariant mass" for systems.
- For example, a nuclear bomb in an idealized super-strong box, sitting on a scale, would in theory show no change in mass when detonated (although the inside of the box would become much hotter). In such a system, the mass of the box would change only if energy were allowed to escape from the box as light or heat. However, in that case, the removed energy would take its associated mass with it. Letting heat out of such a system is simply a way to remove mass. Thus, mass, like energy, cannot be destroyed, but only moved from one place to another.
References
- "New Quantum Theory Separates Gravitational and Inertial Mass". MIT Technology Review. 14 Jun 2010. Retrieved 3 Dec 2013.
- Jacob Aron (10 Jan 2013). "Most fundamental clock ever could redefine kilogram". NewScientist. Retrieved 17 Dec 2013.
- W. Rindler (2006). Relativity: Special, General, And Cosmological. Oxford University Press. pp. 16–18. ISBN 0-19-856731-6.
- Kane, Gordon (September 4, 2008). "The Mysteries of Mass". Scientific American (Nature America, Inc.). pp. 32–39. Retrieved 2013-07-05.
- Rindler, W. (2006). Relativity: Special, General, And Cosmological. Oxford University Press. p. 22. ISBN 0-19-856731-6.
- Eötvös, R. V.; Pekár, D.; Fekete, E. (1922). "Beiträge zum Gesetz der Proportionalität von Trägheit und Gravität". Annalen der Physik 68: 11. doi:10.1002/andp.19223730903.
- Drake, S. (1979). "Galileo's Discovery of the Law of Free Fall". Scientific American 228 (5): 84–92. Bibcode:1973SciAm.228e..84D. doi:10.1038/scientificamerican0573-84.
- Galileo, G. (1632). Dialogue Concerning the Two Chief World Systems.
- Galileo, G. (1638). Discorsi e Dimostrazioni Matematiche, Intorno à Due Nuove Scienze 213. Louis Elsevier., translated in Crew, H.; de Salvio, A., eds. (1954). Mathematical Discourses and Demonstrations, Relating to Two New Sciences. Dover Publications. ISBN 1-275-10057-0. and also available in Hawking, S., ed. (2002). On the Shoulders of Giants. Running Press. pp. 534–535. ISBN 0-7624-1348-4.
- Hooke, R. (1674). "An attempt to prove the motion of the earth from observations". Royal Society.
- Turnbull, H. W., ed. (1960). Correspondence of Isaac Newton, Volume 2 (1676–1687). Cambridge University Press. p. 297.
- Hawking, S., ed. (2005). Principia. Running Press. pp. 15ff. ISBN 978-0-7624-2022-3.
- Whiteside, D. T., ed. (2008). The Mathematical Papers of Isaac Newton, Volume VI (1684–1691). Cambridge University Press. ISBN 978-0-521-04585-8. Retrieved 12 March 2011.
- Sir Isaac Newton; N. W. Chittenden (1848). Newton's Principia: The mathematical principles of natural philosophy. D. Adee. Retrieved 12 March 2011.
- Cuk, M. (January 2003). "Curious About Astronomy: How do you measure a planet's mass?". Ask an Astronomer. Retrieved 2011-03-12.
- Taylor, E. F.; Wheeler, J. A. (1992). Spacetime Physics. W. H. Freeman. pp. 248–149. ISBN 0-7167-2327-1.
- G. Oas (2005). "On the Abuse and Use of Relativistic Mass". arXiv:physics/0504110 [physics.ed-ph].
- Okun, L. B. (1989). "The Concept of Mass". Physics Today 42 (6): 31–36. Bibcode:1989PhT....42f..31O. doi:10.1063/1.881171.
- Rindler, W.; Vandyck, M. A.; Murugesan, P.; Ruschin, S.; Sauter, C.; Okun, L. B. (1990). "Putting to Rest Mass Misconceptions". Physics Today 43 (5): 13–14, 115, 117. Bibcode:1990PhT....43e..13R. doi:10.1063/1.2810555.
- Sandin, T. R. (1991). "In Defense of Relativistic Mass". American Journal of Physics 59 (11): 1032. Bibcode:1991AmJPh..59.1032S. doi:10.1119/1.16642.
- Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman. p. 466. ISBN 978-0-7167-0344-0.
External links
Wikimedia Commons has media related to Mass (physical property). |
Wikisource has the text of The New Student's Reference Work article Mass. |
- Francisco Flores (6 Feb 2012). "The Equivalence of Mass and Energy". Stanford Encyclopedia of Philosophy. Retrieved 3 Dec 2013.
- Gordon Kane (27 Jun 2005). "The Mysteries of Mass". Scientific American. Retrieved 3 Dec 2013.
- L. B. Okun (15 Nov 2001). "Photons, Clocks, Gravity and the Concept of Mass" (pdf). Nuclear Physics. Retrieved 3 Dec 2013.
- Frank Wilczek (13 May 2001). "The Origin of Mass and the Feebleness of Gravity" (video). MIT Video. Retrieved 3 Dec 2013.
- John Baez et al. (2012). "Does mass change with velocity?". Retrieved 3 Dec 2013.
- John Baez et al. (2008). "What is the mass of a photon?". Retrieved 3 Dec 2013.
- David R. Williams (12 February 2008). "The Apollo 15 Hammer-Feather Drop". NASA. Retrieved 3 Dec 2013.
|
|
No comments:
Post a Comment